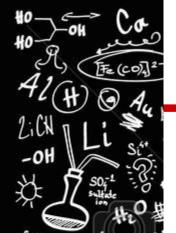


Química – Prof.ª Talita Sousa

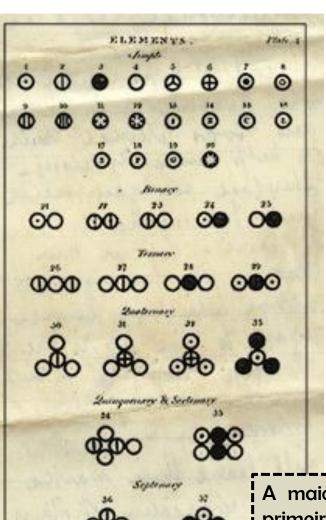
As primeiras tentativas de organização

As principais tentativas de organização dos elementos químicos surgiram a partir do século XIX.


Elas baseavam-se nas observações experimentais das propriedades químicas e físicas dos elementos conhecidos até então.

Alquimista à procura da pedra filosofal, de Joseph Wright (1771): a descoberta do fósforo por Henning Brand.

Até o final do século	Número de elementos químicos conhecidos
XVII	14
XVIII	33
XIX	83
XX	112



O **fósforo** foi o primeiro a ser identificado cientificamente, em 1669, pelo alquimista **Henning Brand,** ao tentar produzir ouro utilizando a urina.

As primeiras tentativas de organização

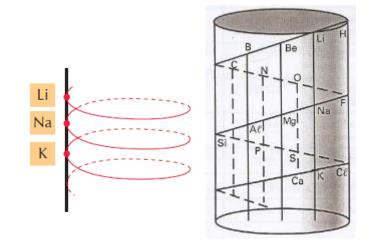
Leis das tríades de Johann Wolfgang Döbereiner

Observou que a massa atômica do bromo era a **média aritmética da massa** de dois outros elementos (cloro e iodo) e que os três possuíam **propriedades químicas muito semelhantes.**

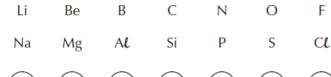
$$\begin{array}{c|c}
C\ell 35,5 \\
Br 80 \\
I 127
\end{array}
\longrightarrow \frac{35,5 + 127}{2} = 81,25$$

$$\begin{array}{c|c}
\text{Li 7} \\
\text{Na 23} \\
\text{K 39}
\end{array}
\qquad \frac{7+39}{2} = \boxed{23}$$

A maioria dos autores atribui a primeira tentativa de organização de elementos a **Dalton**.



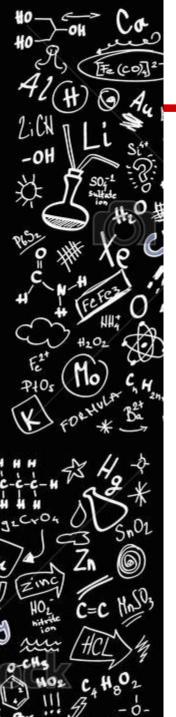
As primeiras tentativas de organização


O parafuso telúrico de Alexandre de Chancourtois

Observou que alguns elementos, quando dispostos em uma espiral em ordem de suas massas atômicas, apresentavam grupos com propriedades químicas semelhantes obedecendo a intervalos regulares.

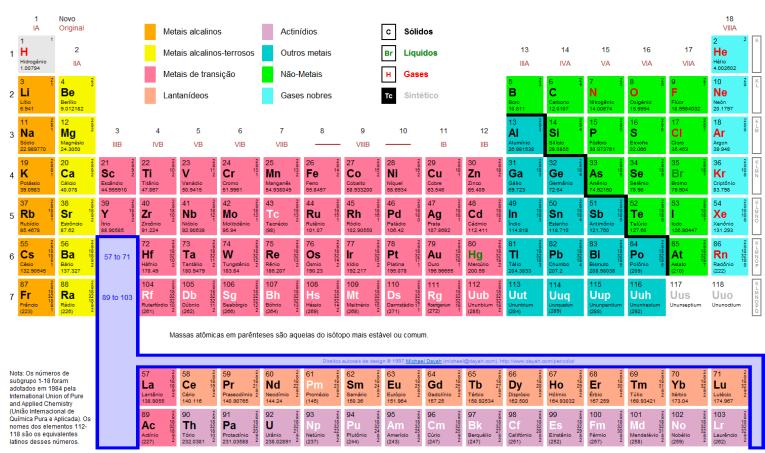
A lei das oitavas de Alexander Reina Newlands

Observou que, ao dispor os elementos em sequências de oito, em ordem crescente de massa atômica, o primeiro possuía propriedades semelhantes às do oitavo elemento.



A classificação periódica de Dmitri Ivanovich Mendeleev

Quando todos os elementos são dispostos **em ordem crescente de massas atômicas**, a tabela resultante exibe propriedades periódicas e permite observar os **vários tipos de relações químicas**.


Grupo I Série		Grupo II		Grupo III		Grupo IV		Grupo V		Grupo VI		Grupo VII		Grupo VIII		
1		H 1														
2	Li 7		Be 9,4		В 11		C 12		N 14		0 16		F 19			
3		Na 23		Mg 24		Αί 27,3		Si 28		P 31		S 32		Cl 35,5		
4	K 39		Ca 40		? 44		Ti 48		V 51		Cr 52		Mn 55		Fe-56 Ni-59	Co-59
5		Cu 63		Zn 65		? 68		? 72		As 75		Se 78		Br 80		
6	Rb 85		Sr 87		? 88		Zr 90		Nb 94		Mo 96		? 100		Ru-104 Pd-106	Rh-104
7		Ag 108		Cd 112		In 113		Sn 118		Sb 122		Te 128		1 127		
8	Cs 133		Ba 137		? 138		? 140									
9																
10			? 178		? 180		Ta 182		W 184						Os-195 Pt-198	lr-197
11		Au 199		Hg 200		Tℓ 204		Pb 207		Bi 208						
12							Th 231						U 240			

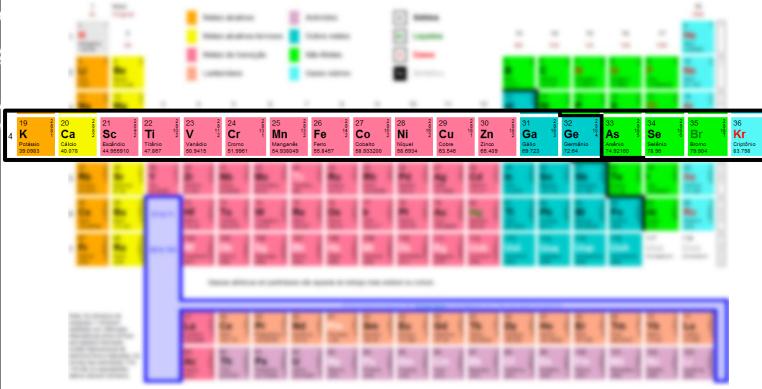
A tabela periódica atual

No ano de 1913, o físico inglês Henry Moseley mediu a frequência das linhas espectrais de raios X de 40 elementos e, a partir dos resultados encontrados, propôs a caracterização dos elementos pelo número atômico.

Interpretando a tabela periódica

Os elementos químicos, que são organizados em uma tabela periódica, apresentam propriedades que podem ser inferidas em acordo com duas bases:

		(I) famílias ou grupos									Gr	upo	Família					Quantidade de elétrons na camada de valência				
				1		meta	ais alc	alino	S	1												
_					2	me	tais a	lcalin	o terr	osos	2											
ı	1 IA										:	13			boro)				3		
1	1 1 H	-		•			<u> </u>	-		<u> </u>	:	14		C	arbo	no				4		
ľ	Hidrogénio 1.00794	Ŀ					Е	_				15		ni	trogê	nio				5		
2	3 ² Li				-		1000-1001			•		16	calcogênios							6		
ı	Lítio 6.941	a.		4 4 4 4						-	:	17	halogênios					7				
3	11 Na 1	5						i.	E.		:	18	gases nobres				8					
ı	Sódio 22.989770	н		+	۰	-	-	-	۰	H	-	۰		H		_	\vdash					
4	19 ² 8 8			L	_				-		2	L	L	ᆫ	ᆫ		ш					
ı	Potássio 39.0983			4,1							1	ь			Ŀ							
5	Rb 18 8				Е			F	Е		-	Е		F	F	F		= 1				
ı	85.4678			г.	_	_	_	_	_					-	-	-						
6	Cs 18 18 Césio 1			느														_				
	132.90545	Š.		ia.	6	4	4		-	1	64	2			1		2	4.1				
7	Fr 18 32 18 Frâncio 8	Ď.		-	8	-	1	5			23						31	233				
L	(223) 1																					



Interpretando a tabela periódica

(II) períodos

O período corresponde ao **número de camadas eletrônicas** ou níveis energéticos de um elemento. No entanto, diferentemente das famílias, os elementos que se encontram na **mesma linha** apresentam o **mesmo número de camadas eletrônicas.**

Atividade

Mód. 14 – Tabela periódica: conceitos, organização e estrutura

Exercícios conceituais e contextualizados

Data: 07/05/2019

FIM!

Química – Prof.ª Talita Sousa